A one-dimensional Keller-Segel equation with a drift issued from the boundary
نویسندگان
چکیده
We investigate in this note the dynamics of a one-dimensional Keller-Segel type model on the half-line. On the contrary to the classical configuration, the chemical production term is located on the boundary. We prove, under suitable assumptions, the following dichotomy which is reminiscent of the two-dimensional Keller-Segel system. Solutions are global if the mass is below the critical mass, they blow-up in finite time above the critical mass, and they converge to some equilibrium at the critical mass. Entropy techniques are presented which aim at providing quantitative convergence results for the subcritical case. This note is completed with a brief introduction to a more realistic model (still one-dimensional). Résumé Nous étudions dans cette note la dynamique d’un modèle unidimensionnel de type KellerSegel posé sur une demi-droite. Dans le cas présent, la production du signal chimique est localisée sur le bord, au lieu d’être répartie à l’intérieur du domaine comme dans le cas classique. On démontre, sous des hypothèses convenables, la dichotomie suivante qui rappelle le système de Keller-Segel en dimension deux d’espace. Les solutions sont globales si la masse est sous-critique, elles explosent en temps fini si la masse dépasse la masse critique. Enfin, les solutions convergent vers un état d’équilibre lorsque la masse est égale à la valeur critique. Des méthodes d’entropie sont développées, dans le but d’obtenir des résultats de convergence quantitatifs. Cette note est enrichie d’une brève introduction à un modèle plus réaliste (à nouveau unidimensionnel). Version française abrégée Dans cette note nous allons étudier le comportement mathématique en dimension un de l’équation aux dérivées partielles suivante : ∂tn(t, x) = ∂xxn(t, x) + n(t, 0)∂xn(t, x) , t > 0 , x ∈ (0,+∞) , (1) avec la condition initiale : n(t = 0, x) = n0(x) ≥ 0. Nous imposons au bord une condition de flux nul : ∂xn(t, 0) + n(t, 0) 2 = 0, de sorte que la masse est conservée au cours du temps (au moins formellement) :
منابع مشابه
A (1+2)-Dimensional Simplified Keller-Segel Model: Lie Symmetry and Exact Solutions
This research is a natural continuation of the recent paper “Exact solutions of the simplified Keller–Segel model” (Commun Nonlinear Sci Numer Simulat 2013, 18, 2960–2971). It is shown that a (1+2)-dimensional Keller–Segel type system is invariant with respect infinite-dimensional Lie algebra. All possible maximal algebras of invariance of the Neumann boundary value problems based on the Keller...
متن کاملThe Keller-Segel model with small diffusivity
We study the classical model for chemotaxis, the so-called Keller-Segel model, which is a drift-diffusion equation for the cell density coupled with an elliptic equation describing the evolution of the chemoattractant. We investigate the case of small cell diffusivity and, in particular, the hyperbolic limit of the system as the diffusion coefficient goes to zero. Considering a model where the ...
متن کاملA (1 + 2)-Dimensional Simplified Keller-Segel Model: Lie Symmetry and Exact Solutions. II
Abstract: A simplified Keller–Segel model is studied by means of Lie symmetry based approaches. It is shown that a (1 + 2)-dimensional Keller–Segel type system, together with the correctly-specified boundary and/or initial conditions, is invariant with respect to infinite-dimensional Lie algebras. A Lie symmetry classification of the Cauchy problem depending on the initial profile form is prese...
متن کاملAnalysis of a non local model for spontaneous cell polarisation
In this work, we investigate the dynamics of a non-local model describing spontaneous cell polarisation. It consists in a drift-diffusion equation set in the half-space, with the coupling involving the trace value on the boundary. We characterize the following behaviours in the one-dimensional case: solutions are global if the mass is below the critical mass and they blow-up in finite time abov...
متن کاملThe Keller-Segel Model with Logistic Sensitivity Function and Small Diffusivity
Abstract. The Keller-Segel model is the classical model for chemotaxis of cell populations. It consists of a drift-diffusion equation for the cell density coupled to an equation for the chemoattractant. Here a variant of this model is studied in one-dimensional position space, where the chemotactic drift is turned off for a limiting cell density by a logistic term and where the chemoattractant ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009